Comparison of the Usefulness of the Updated Homeostasis Model Assessment (HOMA2) with the Original HOMA1 in the Prediction of Type 2 Diabetes Mellitus in Koreans

Young Seok Song¹, You-Cheol Hwang², Hong-Yup Ahn³, Cheol-Young Park¹

¹Division of Endocrinology and Metabolism, Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, ² Division of Endocrinology and Metabolism, Department of Internal Medicine, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, ³Department of Statistics, Dongguk University, Seoul, Korea

Young Seok Song

Background

- The pathophysiology of type 2 diabetes mellitus (T2DM) involves insulin resistance (IR) and β-cell dysfunction.
- Accordingly, estimating IR and β-cell function is essential for screening high-risk subjects for T2DM and making a treatment plan.
- There are several methods for estimating IR and β-cell function, including the euglycemic or hyperinsulinemic euglycemic clamp, frequently sampled intravenous glucose tolerance, C-peptide to glucose ratio, and homeostasis model assessment (HOMA) model

The Aim of study

• The primary purpose of this study was to compare the predictive ability of HOMA1 and HOMA2 for diabetes in Korean population.

Subjects & Method (1)

- A retrospective observational study of participants in a medical health checkup program at the Health Promotion Center at Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, from January 2001 to December 2012.
- Participants were divided into a normal glucose tolerance (NGT) group and a pre-diabetes group according to fasting glucose and glycosylated hemoglobin levels.
- Anthropometric and laboratory data were measured at the baseline checkup, and HOMA values were calculated at the baseline and follow-up checkups.
- The hazard ratios (HRs) of the HOMA1 and HOMA2 values and the prevalence of diabetes at follow-up were evaluated using Kaplan-Meier analysis and multivariable Cox proportional hazards model

Subjects

N=136,158

N= 31,464

- history of diabetes
- taking oral hypoglycemic agents
- fasting blood glucose \geq 126 mg/dL or HbA1c \geq 6.5% at the baseline
- missing data
- pregnant subjects
- ect

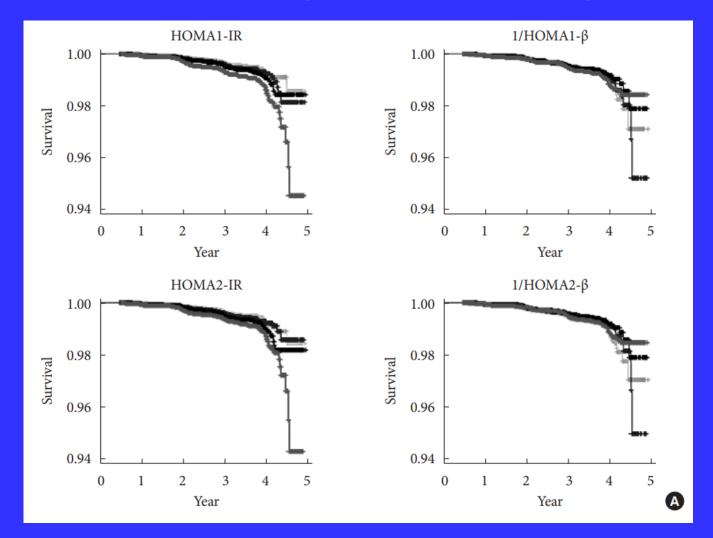
N=104,694

Method (2)

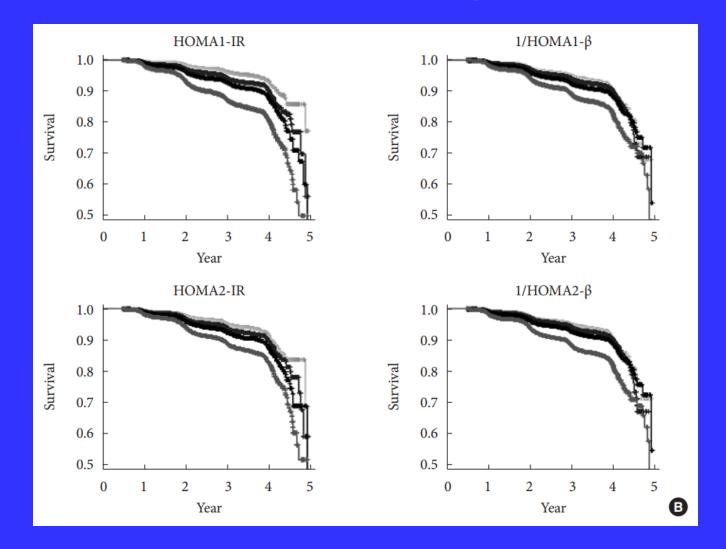
- : Calculation of HOMA
- HOMA1-IR was defined as [fasting insulin (µU/mL)× fasting glucose (mmol/L)]/22.5. HOMA1-β was calculated using (20×fasting insulin)/(fasting glucose–3.5).
- HOMA2-IR and HOMA2-β data were calculated with a HOMA2 calculator released by the Diabetes Trials Unit, University of Oxford: HOMA Calculator.
 - This calculator is available at: http://www.
 dtu.ox.ac.uk/homacalculator/index.php (updated January 8, 2013).
- HOMA1- β and HOMA2- β have a negative correlation with diabetes risk, so we took the inverse value to compare them with HOMA-IR or HOMA2-IR.

Baseline characteristics of the study participants

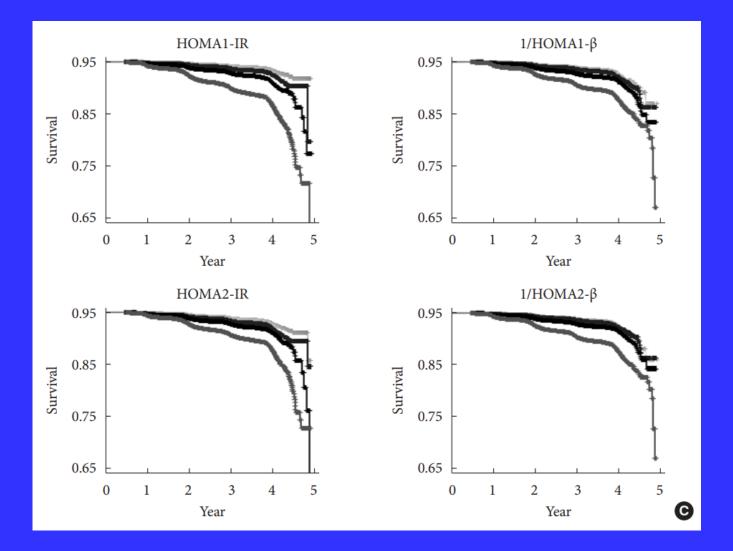
Characteristic	NGT group ^a (<i>n</i> =72,915)	Pre-diabetes group ^b ($n=31,779$)	Non-diabetic group ^c (<i>n</i> =104,694)	P value ^d
Age at first visit, yr	37.9 ± 6.8	41.2±8.3	38.9 ± 7.4	< 0.001
BMI, kg/m ²	23±2.9	24.2 ± 3.1	23.4 ± 3.0	< 0.001
Waist circumference, cm	78.6 ± 9.4	82.4±9.3	79.8 ± 9.5	< 0.001
Female sex, %	29,676 (40.7)	10,996 (34.6)	40,672 (38.8)	< 0.001
Family history of DM, %	9,625 (13.2)	5,402 (17.0)	15,027 (14.4)	< 0.001
Current smoker, %	18,885 (25.9)	8,517 (26.8)	27,402 (26.2)	0.002
Progression to DM, %	313 (0.4)	1,626 (5.1)	1,939 (1.9)	< 0.001
AST, IU/L	23.7 ± 7.0	24.9 ± 8.0	23.8±7.3	< 0.001
ALT, IU/L	23.8 ± 13.2	27.6±15.7	25.0 ± 14.1	< 0.001
Serum creatinine, mg/dL	1.01 ± 0.15	1.04 ± 0.15	1.02 ± 0.15	< 0.001
eGFR, mL/min	79.4±9.1	77.3±9.1	78.8 ± 9.2	< 0.001
SBP, mm Hg	111.5 ± 13.0	116.2 ± 14.7	112.9 ± 13.7	< 0.001
HbA1c, %	5.26 ± 0.23	5.61 ± 0.32	5.37 ± 0.30	< 0.001
Total cholesterol, mg/dL	186.6 ± 31.7	196.3 ± 33.4	189.6 ± 32.5	< 0.001
Triglyceride, mg/dL	115.3±73.3	140.7 ± 92.3	123.0 ± 80.4	< 0.001
LDL-C, mg/dL	106.6 ± 27.1	114.1 ± 28.5	108.9 ± 27.7	< 0.001
HDL-C, mg/dL	54.5 ± 12.3	52.4±11.7	53.9 ± 12.2	< 0.001
Non-HDL-C, mg/dL	132.1 ± 32.1	143.9 ± 33.4	135.7 ± 32.9	< 0.001
HOMA1-IR	1.91 ± 0.72	2.39 ± 0.97	2.06 ± 0.84	< 0.001
ΗΟΜΑ1-β	120.42 ± 70.08	93.80±39.82	112.34 ± 63.65	< 0.001
HOMA2-IR	1.27 ± 0.45	1.46 ± 0.55	1.33 ± 0.49	< 0.001
ΗΟΜΑ2-β	100.09 ± 35.51	93.14±31.67	97.98 ± 34.54	< 0.001


Univariate Cox proportional hazards analysis model of HOMA values for developing type 2 diabetes mellitus

Variable -	NGT group		Pre-diabetes	Pre-diabetes group		All participants (non-diabetic group)	
	HR (95% CI) ^a	P value	HR (95% CI) ^a	P value	HR (95% CI) ^a	P value	
HOMA1-IR	1.13 (1.1–1.17)	< 0.001	1.42 (1.38–1.46)	< 0.001	1.21 (1.20–1.22)	< 0.001	
1/HOMA1-β	0.99 (0.87–1.14)	0.922	1.13 (1.11–1.15)	< 0.001	1.12 (1.11–1.13)	< 0.001	
HOMA2-IR	1.18 (1.13–1.23)	< 0.001	1.33 (1.29–1.38)	< 0.001	1.25 (1.23–1.26)	< 0.001	
1/HOMA2-β	0.95 (0.83–1.08)	0.418	1.26 (1.23–1.29)	< 0.001	1.26 (1.25–1.28)	< 0.001	


HOMA, homeostasis model assessment; NGT, normal glucose tolerance; HR, hazard ratio; CI, confidence interval; HOMA1, original HOMA; IR, insulin resistance; HOMA2, updated HOMA model.

^aWhen increased by the standard deviation from the mean value of each HOMA value. Reference is the mean value of each HOMA model.


Kaplan-Meier curves for the cumulative prevalence of T2D for the quartile of HOMA values in the normal glucose tolerance group

Kaplan-Meier curves for the cumulative prevalence of T2D for the quartile of HOMA values in the pre-diabetic group

Kaplan-Meier curves for the cumulative prevalence of T2D for the quartile of HOMA values in the non-diabetic group

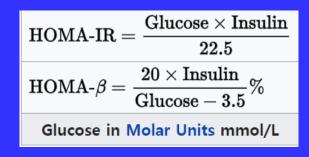
Multivariate a Cox proportional hazards analysis model of HOMA values for developing T2D

Variable -	NGT group		Pre-diabetes group		All participants (non-diabetic group)	
	HR (95% CI) ^b	P value	HR (95% CI) ^b	P value	HR (95% CI) ^b	P value
HOMA1-IR	1.09 (1.04–1.14)	< 0.001	1.23 (1.19–1.28)	< 0.001	1.14 (1.12–1.15)	< 0.001
1/HOMA1-β	1.07 (0.97–1.17)	0.177	1.14 (1.12–1.16)	< 0.001	1.13 (1.11–1.14)	< 0.001
HOMA2-IR	1.11 (1.04–1.19)	0.001	1.13 (1.08–1.18)	< 0.001	1.12 (1.09–1.15)	< 0.001
1/HOMA2-β	1.05 (0.93–1.20)	0.428	1.29 (1.26–1.31)	< 0.001	1.27 (1.25–1.29)	< 0.001

HOMA, homeostasis model assessment; NGT, normal glucose tolerance; HR, hazard ratio; CI, confidence interval; HOMA1, original HOMA; IR, insulin resistance; HOMA2, updated HOMA model.

^aAll estimates reflect adjustment for age, sex, body mass index, family history of diabetes, history of smoking, systolic blood pressure, glycosylated hemoglobin, triglyceride, and high density lipoprotein cholesterol, ^bWhen increased by the standard deviation from the mean value of each HOMA value. Reference is the mean value of each HOMA model.

Summary


- All of the HOMA values except HOMA1-β and HOMA2-β in the NGT group were significant predictors of the progression to diabetes.
- In the NGT group, there was no significant difference in HOMA1-IR and HOMA2-IR
- In the pre-diabetes group, HOMA2- β was a more powerful marker than HOMA1-IR or HOMA1- β
- In the non-diabetic group (NGT+pre-diabetes), HOMA2- β was also a stronger predictor of diabetes than HOMA1-IR or HOMA1- β

Conclusion

• HOMA2 is more predictive than HOMA1 for the progression to diabetes in pre-diabetes or non-diabetic Koreans.

Homeostatic model assessment

- The original HOMA (HOMA1) has been broadly used due to its simplicity and cost effectiveness. Previous studies show that an increase of HOMA1-IR and a decrease of HOMA1-β are associated with an increased incidence of diabetes and future cardiovascular events in patients with T2DM.
- An updated HOMA (HOMA2), the correctly solved computer model that considers such variations, was announced in 1998. HOMA2 was recalibrated to give steady-state β-cell function (% B) and insulin sensitivity (% S) of 100% in normal young adults when using currently available assays for insulin, specific insulin, or C-peptide

available at: http://www. dtu.ox.ac.uk/homacalculat or/index.php (updated January 8, 2013).